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A number of studies have indicated that imperfections in cellular solids can have a very
large influence on their mechanical behavior. Waviness in cell walls can drastically reduce
elastic stiffnesses, and various irregularities can reduce the effective strengths by large
factors. These imperfections have in many instances been studied in isolation, i.e., only a
singe type of imperfection was studied at a time. The goal of the present paper is to shed
light on how different kinds of imperfections interact. There is a potential risk that when
multiple kinds of imperfections are present, the mechanical properties of the cellular solid
are worse than what would be predicted from each one in isolation. The present study is
focused on linear elastic properties, although many of the conclusions apply also for other
properties. The method employed is based on statistical averages and Taylor expansion
arguments. Such techniques have in previous papers been applied to a single imperfection
type. The conclusion from the present analysis is that, up to the third order in “small”
parameters describing the severity of the imperfections, there is no interaction between a
number of different types of imperfections.
C© 2005 Springer Science + Business Media, Inc.

1. Introduction
There exist a large number of idealized models for
“perfect” (3D) closed cell cellular solids (e.g., Gib-
son and Ashby [1], Grenestedt [2]). Some of these
models predict properties of, for example, expanded
PVC foams fairly well. However, these models tend
to overestimate the properties of some other cellular
solids, such as aluminum foams (e.g., [3]). The reason
is believed to be attributed to various kinds of geomet-
ric “imperfections” in the cellular solids, or deviations
from the idealized models. A number of different kinds
of imperfections in (3D) cellular solids have been stud-
ied, including cell wall waviness (e.g., Grenestedt [4],
Simone and Gibson [5]), cell shape variations (e.g.,
Grenestedt and Tanaka [6]), cell wall thickness vari-
ations (e.g., Grenestedt and Bassinet [7]), cell wall
removal, etc. These imperfections have usually been
studied in isolation, i.e., with only one imperfection
present in the cellular solid. However, in real cellu-
lar solids there are in general many different kinds of
imperfections present, as seen in Fig. 1. The present
paper presents some presumably new results for the
case when multiple imperfections are present. The re-
sults are based on statistical arguments similar to those
used by Grenestedt and Bassinet [7]. The paper is ar-
ranged as follows: a particular “perfect” model that has
been used frequently as a reference model for studies

on imperfections, the Kelvin foam with flat cell walls,
is first presented. Some of the results from previous in-
vestigations on the influence of imperfections are then
summarized. The subsequent section deals with the in-
teraction of imperfections and the paper ends with a
summary and some conclusions.

2. Perfectly ordered Kelvin model
The perfectly ordered Kelvin foam consists of poly-
hedra with 14 flat faces (tetrakaidecahedra) as de-
picted in Fig. 2. These polyhedra pack in a body cen-
tered cubic (BCC) arrangement, and completely fill
space. Kelvin (Thomson [8]) used this model, but with
slightly curved faces, to model liquid foams. All poly-
hedra have the same size, and are cubically symmetric.
The stiffness of the resulting cellular solid has cubic,
but not isotropic, symmetry. For cellular solids which
are not isotropic, we will present isotropic stiffness
obtained by averaging stiffnesses over all directions;
for a full discussion, see Kröner [9] and Grenestedt
[2].

The results from Grenestedt’s [2] Finite Element
(FE) analyses show that Young’s modulus and bulk
modulus of this foam scale virtually linearly with den-
sity. The bulk modulus is very close to the theoreti-
cal maximum limit, provided by the Hashin-Shtrikman
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Figure 1 Expanded PVC foam (left) and aluminum foam (right). The PVC foam has better relative properties than the aluminum foam, a fact
which is believed to be due mainly to less curvature in the cell walls. However, many kinds of imperfections are present, including wavy cell walls,
non-uniform cell wall thicknesses, different shapes and sizes of cells, etc.

Figure 2 A 14-sided cell in a flat faced Kelvin foam. The “diameter”
of the cell is L.
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The low density asymptote is of particular interest for
the presently considered low density cellular solids.
The Young’s modulus is for the flat-faced Kelvin cel-
lular solid
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when Poisson’s ratio for the solid is ν = 0.3. The
low density asymptote of the Hashin-Shtrikman upper
bound on Young’s modulus is
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For ν = 0.3, this becomes ĒHS ≈ 0.50E(ρ̄/ρ). The
reference model thus has almost the highest possible

bulk modulus, and a Young’s modulus which is 30%
lower than the maximum possible Young’s modulus.

The elastic properties which this model predicts quite
well match the experimentally measured properties of
expanded PVC (Divinycell [11–13]) of three different
grades and with densities ranging from 36 to 400 kg/m3,
see Grenestedt [2]. The good correlation with experi-
ments was the main reason for selecting this model as
a reference model. However, it overestimates the stiff-
nesses of aluminum foams.

3. Wavy distortions of cell walls
In this Section, wavy distortions of the cell walls are
discussed. For sake of simplicity, the cell walls will
be assumed to have constant thickness. Details of the
derivations are given by Grenestedt [4] but are presently
omitted.

In order to get some insight into the mechanics of this
kind of imperfection, a rod is first studied. If the rod is
straight and stretched by a force F, then the elongation
δ is

δ = Fa

E A
(4)

where E is Young’s modulus of the material in the rod,
A is the cross sectional area of the rod, and a is the
length of the rod. If the rod has a shallow initial wavy
distortion with the shape

ŵ0

(
1 − cos

2mπx

a

)
(5)

where ŵ0 is the amplitude of the wavy imperfection,
x is the coordinate along the length of the rod, and m
is an integer, then the force-elongation relationship for
small elongations becomes

δ = Fa

E A

(
1 + ŵ2

0 A

2I

)
(6)

where I is the area moment of inertia of the rod. A
number of details have been left out here, but these have
little consequence for the present discussion. Assume
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for the sake of simplicity that the rod has a rectangular
cross section with the side h. The stiffness of the rod
then becomes

F

δ
= Eh2

a

(
1 + 6

(
ŵ0

h

)2) (7)

and this provides good insight into the influence of
wavy imperfections on stiffnesses. If the initial wavy
imperfection has an amplitude equal to the thickness
of the rod, ŵ0 = h, then the stiffness is a seventh of
the stiffness of the straight rod, and with ŵ0 = 2h the
stiffness is only 4%.

We now turn to closed cell 3D models. The only ge-
ometry considered in the present model is the shape of
a single cell wall, which in some sense is representative
for the whole cellular solid. All cell walls in the model
are assumed to be made of the same material and have
the same shape, but they may have different sizes. This
simplification allows upper bounds to be derived using
the single cell wall. The shape of a representative cell
wall naturally depends on the foam. Grenestedt [4] se-
lected a square plate with side a, uniform thickness t,
and with the wavy imperfections

w0(x, y) = ŵ0 sin
mπx

a
sin

nπy

a
(8)

as a representative cell wall shape. A square shaped cell
wall is not substantially more unphysical than a pen-
tagon, hexagon or any other similarly shaped wall. The
square plate is simple to model and provides the desired
results. The goal of the study was not to get a highly
accurate value of actual stiffnesses, but to provide in-
sight into some of the mechanisms. Stiffnesses were
calculated using the Finite Element Method (FEM).
Here, x and y are Cartesian coordinates, ŵ0 is the am-
plitude of the waviness, and m and n integers. Details
are provided in Grenestedt [4] and only some results
are presented here. The shear and bulk moduli for the
cases m = n = 1 and m = n = 2 are given in Fig. 3.

For vanishing waviness amplitude, ŵ0 = 0, the
present 3D model predicts the same stiffnesses as the
low density asymptotes of the Hashin-Shtrikman upper
bounds, i.e., K̄/E ≈ 0.32(ρ̄/ρ), Ḡ/E ≈ 0.20(ρ̄/ρ)
and Ē/E ≈ 0.50(ρ̄/ρ) when ν = 0.3. The present
model predicts the Young’s modulus (Ē/E)/(ρ̄/ρ) =

Figure 3 Normalized shear (G) and bulk (K) moduli plotted versus
waviness amplitude ŵ0/t where t is the thickness of the cell walls. The
moduli are normalized by the values they assume with no imperfections.

Figure 4 Kelvin foam model with a total volume equal to that of 16
cells.

0.31 for ŵ0/t = 5, m = n = 1, and t/a = 0.03, which
is a 38% decrease relative to the foam with no cell wall
waviness, and (Ē/E)/(ρ̄/ρ) = 0.28 for ŵ0/t = 2,
m = n = 2, and t/a = 0.003, which is a 44% decrease.
These parameters appear to be fair estimates of the
wavy imperfections in the Alporas aluminum foam,
seen in Fig. 1 (right).

4. Cell wall thickness variations
The influence of cell wall thickness variations has been
studied by Grenestedt and Bassinet [7], and some of
the results are discussed here. The Kelvin model pre-
sented previously was used as a reference, and cell wall
thickness variations were introduced in this model. The
resulting stiffnesses have no bounding properties.

A model as depicted in Fig. 4, which has the vol-
ume of 16 of the polyhedra introduced in Fig. 2, was
chosen as a unit cell for all analyses. This model was
then repeated periodically in three dimensions. Rigor-
ous periodicity boundary conditions were applied and
all stiffnesses calculated using FEM.

There are 112 different cell walls in the unit cell. The
112 walls were allocated thicknesses randomly, as

ti = t0(1 + αϕi )c, i = 1, 2, . . . , 112 (9)

where the amplitude of the cell wall thickness variation
α ∈ (0, 1) is a real number, ϕi ∈ (−1, 1) is a random
number with a uniform distribution, and t0 is the cell
wall thickness of the perfect structure, i.e. when α = 0.
A random distribution is likely to change the density
of the cellular solid (the amount of material within the
unit cell), and therefore all cell walls were multiplied
with the normalizing factor c to keep the density of the
cellular solid constant.

Details of the analysis are omitted, but the results in
terms of the variation of shear and bulk moduli with
thickness imperfection amplitude α are presented in
Fig. 5. The relative density of the foam in the figure is
ρ̄/ρ = 0.01. As seen in the figure, the moduli are not
very sensitive to cell wall thickness variations in this
model. Even for α = 0.9, which means that the thickest
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Figure 5 Normalized shear (G) and bulk (K) moduli plotted versus the
amplitude of the cell wall thickness variation α.

cell wall can be 19 times as thick as the thinnest, the
moduli not even decreased by 20%.

5. Cell shape variations
The last imperfection discussed in some depth in
this paper is cell shape variations, as studied by
Grenestedt and Tanaka [6]. The larger Kelvin model
of Fig. 4 was again used as a reference. The cell walls
of the reference model coincide with the boundaries
of the Voronoi sets1 made from points, or “kernels”,
arranged in a BCC fashion. The non-uniform models
were created by moving the kernels from the original
positions of the perfect Kelvin foam in a random fash-
ion. However, movements of the kernels were limited
to be no more than βL, where β is an amplitude of the
cell shape non-uniformity and L is the “diameter” of the
perfect Kelvin polyhedron; see Fig. 2. The coordinates
of the kernels of the perfect Kelvin foam, xk

i , were thus
perturbed as follows:

xk
i = x̃ k

i + βLϕk
i (10)

where the amplitude of the cell shape non-uniformity
β is a real number and ϕi ∈ (−1, 1) is a stochastic
variable with a uniform distribution. Voronoi sets were
made from these kernels, and thus the non-uniform
cell models were obtained. Just as in the last Section,
periodicity was assumed with 16 polyhedra in the unit
cell (Fig. 4), and cell wall thicknesses were adjusted to
keep the effective density of the foam models constant.

We again omit the details of the FE analysis, but
present the variation of shear and bulk moduli with
amplitude of the cell shape non-uniformity β in Fig. 6.
The relative density of the foam in the figure is ρ̄/ρ =
0.01. As seen in the figure, the moduli are not very
sensitive to cell shape variations in this model. Even
for β = 0.5, the shear modulus has only decreased by
less than 10%.

6. Interactions between imperfections in
cellular solids

Assume that there are two independent imperfections
present in the cellular solid, and that the severities of

1The Voronoi set Vk of kernel pk is the set of points in space which are
closer to pk than to any other kernel pl, where k�=l. Each Voronoi set
Vk (which here is a volume) is convex and encloses only one kernel,
pk. The boundaries of the Voronoi sets are flat.

Figure 6 Normalized shear (G) and bulk (K) moduli plotted versus the
amplitude of the cell shape non-uniformity parameter β.

these imperfections are scaled by the parameters α and
β. The effective properties of the foam (e.g., shear
modulus G) will then depend on α and β. If the imper-
fections are “small”, G may be expanded in a Taylor
series:

G = G0

∑
i=0,1,2,...
j=0,1,2,...

ki jα
iβ j (11)

where k00 = 1. For small imperfections, the higher or-
der terms may be neglected. Neglecting fifth order
terms and higher, the following approximation is ob-
tained

G =G0(1 + k01β + k02β
2 + k03β

3 + k04β
4 + k10α

+ k11αβ + k12αβ2 + k13αβ3 + k20α
2 + k21α

2β

+ k22α
2β2 + k30α

3 + k31α
3β + k40α

4 + O(α, β)5)

(12)

The parameters α and β are for many types of im-
perfections not limited to non-negative numbers. For
example, a negative ŵ0 makes complete sense in Equa-
tions 5 and 8, as do a negative α in Equation 9 and
a negative β in Equation 10. Due to the statistical na-
ture, G(α,β) = G(−α,β) = G(α, −β). This requires the
following constants in the Taylor expansion to vanish:
k01, k03, k10, k11, k12, k13, k21, k30, k31, etc. Thus, to the
fourth order,

G = G0(1 + k20α
2 + k02β

2 + k40α
4

+ k04β
4 + k22α

2β2) (13)

In conclusion, to the third order there is no interaction
between imperfections (the lowest order term including
interactions is k22α

2β2). Extending the argument to
an arbitrary number of imperfections, as well as to
other properties of the cellular solid, is straight forward.
The argument requires that the parameters describing
the imperfections may take both positive and negative
values without changing the cellular solids’s properties
in a statistical sense.

Li et al. [14] recently calculated elastic properties
of 2D cellular solids with two kinds of imperfections
simultaneously present. Their numerical results also
showed that there was very little interaction between
the two kinds of imperfections in their materials.
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7. Conclusions
In this paper, the influences of some different kinds of
imperfections in cellular solids were revisited. These
imperfections were waviness of cell walls, thickness
variations of cell walls, and shape variations of cells.
More recent work is presented by Ribeiro-Ayeh and
Hallström in the Thesis of the former [15]. The results
from these studies suggest that stiffnesses are most
sensitive to cell wall waviness. Further, using Taylor
expansion and statistical arguments, it was shown that
interactions between imperfections are very weak for
small imperfections. This means that if, say, two dif-
ferent kinds of imperfections are present in a cellular
solid, then to the third order their influence on stiff-
ness reductions are simply additive. For example, if a
certain cell wall waviness reduces the stiffness by 5%
and a certain cell thickness variation reduces stiffness
by 3%, then having both imperfections present simul-
taneously in a cellular would reduce the stiffness by
approximately 8%.
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